## **Chapter 5**

## **Gravitation & Satellites**



Copyright © 2005 Pearson Prentice Hall, Inc.

# 3 relationships in Ch 5 based on Newton's Law of Gravitation

- gravitational attraction force
- orbital speed of satellites
- gravitational acceleration rate





#### Newton's Law of Universal Gravitation

- gravitate: to move towards or be attracted to another object
- Two chunks of mass,  $m_1 m_2$ , that are separated by a distance *r* exert a gravitational attraction force  $F_g$  of equal magnitude on each other

$$F_g = \frac{G \bullet m_1 \bullet m_2}{r^2}$$
 G = 6.67 x 10<sup>-11</sup> Nm<sup>2</sup>/kg<sup>2</sup>

- G is a universal proportionality constant that converts  $m_1m_2/r^2$  into Newtons
- •Magnitude of  $F_g$  is the same on both masses

## **Inverse Square Law**



- force of equal magnitude acting on Moon and on Earth
- r is a center-to-center separation distance



## F<sub>g</sub> Calculations

Mass above Earth's surface (satellite or orbiting object)

Use r = (radius of Earth + height above surface)



#### Practice with Universal Gravitation Law



#### Practice with Universal Gravitation Law





Reduce the separation distance to  $\frac{1}{2}$  r New F<sub>g</sub> value? Fg = 4X original value (inverse square) = 160 N

#### Practice with Universal Gravitation Law



## **Superposition Principle**

 F<sub>g</sub> forces from adjacent masses do not interact or change each other



## Gravitation near Earth's surface

 acceleration rate due to gravity as a function of r



$$\Sigma F = m_1 a_g = G \frac{m_1 M_E}{r^2}$$
$$a_g = \frac{GM_E}{r^2}$$

acceleration rate is independent of the mass of the object Variable change – prediction problems (usually M.C.)





 $M_{E}, R_{E}, g_{E} \qquad M_{X} = 2M_{E} R_{x} = R_{E} g_{X} = ? \qquad 2g_{E}$   $M_{X} = M_{E} R_{X} = \frac{1}{2} R_{E} g_{X} = ? \qquad 4 g_{E}$   $M_{X} = \frac{1}{2} M_{E} R_{X} = 2R_{E} g_{X} = ? \qquad 1/8 g_{E}$ 

#### Variable change – prediction problems



 $R_X = 2 R_E$   $M_X = ?$   $4 M_E$ 

## Deriving UCM velocity

- Determine what force(s) are providing the centripetal force
- Equate that force with F<sub>c</sub>
- solve for v





satellite speed independent of its mass

#### Variable change – prediction problems



for v' = 2v r'=?  $r' = \frac{r}{4}$ 



$$m_{s}' = 2m_{s}$$
  $v' = ?$   $v' = v$ 

#### **5-8 Satellites and "Weightlessness"**

Objects in orbit are said to experience weightlessness. They do have a gravitational force acting on them, though!

The satellite and all its contents are in free fall, so there is no normal force. This is what leads to the experience of weightlessness.



15

#### Apparent weightlessness in orbit



## Apparent Weightlessness

- Spacecraft and all contents are in a state of continuous free-fall towards Earth
- Since cabin floor is "falling" at same rate as astronaut, the floor cannot exert a normal force up on astronaut
- Centripetal acceleration = free-fall acceleration rate (approx 5 – 8 m/s<sup>2</sup> in orbits around Earth)
- Centripetal force provided by Fg gravitational attraction force
- **<u>NOT</u>** because weight = 0
- Mr. Connell video

#### **5-9 Kepler's Laws**

Kepler's laws describe planetary motion.

1. The orbit of each planet is an ellipse, with the Sun at one focus.



#### **5-9 Kepler's Laws and Newton's Synthesis**

## 2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.



Law of Areas equivalent to angular momentum conservation  $r_1mv_1 = r_2mv_2$ 

# Chapter 11 Simple Harmonic Motion



## **Simple Harmonic Motion**

X

- A: amplitude = max displacement
- x = 0: equilibrium where  $\Sigma F = 0$
- k: spring constant Hooke's law  $k = \frac{F}{K}$



## Restoring Force points to center



#### Restoring force F = -kx

- directed opposite the displacement
- directly proportional to displacement
- maximum at the amplitudes  $F = \pm kA$

#### SHM quantities max/zero



## **Vertical Springs**



- mass is hung from spring at rest at unstrained length
- calculate k using equilibrium
- spring force =  $kd_o = mg$
- oscillation occurs above and below this equilibrium position

• amplitude is then the max displacement from this equilibrium position, determined by person/conditions which create oscillation

## Frequency & Period

• frequency f:  $\frac{\# \text{ of } oscillations}{1 \text{ sec } ond}$  - SI units are Hertz (Hz) inversely related  $T = \frac{1}{f} \quad f = \frac{1}{T}$ • period T:  $\frac{\# \text{ of seconds}}{1 \text{ full oscillation}}$ 

#### SHM is sinusoidal motion



26

#### Energy approach to SHM

DR



Total mechanical energy stays constant

 $E = KE + PE = \frac{1}{2} mv^2 + \frac{1}{2} kx^2$ 

Total energy = all  $PE = \frac{1}{2} kA^2$ at either amplitude position

Total energy = all KE = 
$$\frac{1}{2}$$
 mv<sub>max</sub><sup>2</sup> at equilibrium position

#### Energy in SHM – graphical approach

Elastic Potential Energy U Kinetic Energy K Total mechanical energy E



#### x, v, a calculations

1) displacement or velocity







CAUTION: derived formulas not on formula sheet!! 29

#### **11-3 The Period and Sinusoidal Nature of SHM**



SHM is motion that varies sinusoidally with time

The bottom curve is the same, but shifted 1/4 period so that it is a sine function rather than a cosine.

2 functions to recognize and understand

**x(t)= Acos(**ω**t**)

or

x(t)= Asin(ωt)

#### SHM – sinusoidal functions





sinusoidal variation with time NOT linear, quadratic, inverse or exponential





## UCM – SHM relationship

shadow projection of UCM creates SHM



phere rotating vith constant eed along the cumference of a circle





Chapter

3

<u>demo</u>

Sect

#### ω omega

Linear velocity

$$v_T = \frac{s}{t}$$

Angular velocity

$$\omega = \frac{\theta \text{ in } radians}{t \text{ in sec } onds}$$

 $\sim$ 

 θ is the same for all skaters; ω is the same for all skaters



•  $\omega$  of the UCM object can be used to locate the SHM object

#### Angular Velocity – Angular Frequency ω

• since 
$$\omega = \frac{\theta}{t}$$
 then  $\theta = \omega t$ 

- angular frequency  $\omega$  (omega)
  - same as the angular velocity of an object in UCM in radians per second

$$\omega = \frac{2\pi \text{ radians}}{T \text{ seconds}} = 2\pi f \qquad \text{f must be in Hertz}$$

# each cycle of an object in SHM consists of angular displacement = 2 $\pi$ radians



37

#### **Displacement – time function**



## Maximum Velocity

 $x = 0 \, {\rm m}$ 

Light

Vт

v



+x

## Period of SHM

- Period of an object (mass on a spring or a pendulum) is independent of the amplitude of the motion
  - with greater amplitude comes greater restoring force
  - greater restoring force causes faster speeds
  - object covers the longer distance at faster speeds
  - period stays constant

#### Period for mass on a spring

$$v_{\max} = \frac{2\pi A}{T}$$
 from UCM

#### from energy approach





## Mass on a spring

Same formula for horizontal or vertical spring

$$T = 2\pi \sqrt{\frac{m}{k}}$$

- Period depends on:
  - mass of object
  - spring constant
- Period is independent of:
  - gravity
  - amplitude

## Simple pendulum

• Bob at the end of a string

$$T = 2\pi \sqrt{\frac{L}{g}}$$

- Period depends on:
  - length of pendulum
  - gravitational acceleration rate
- Period is independent of:
  - mass of the bob
  - amplitude

