Chapter 5

Gravitation & Satellites

Copyright © 2005 Pearson Prentice Hall, Inc.

3 relationships in Ch 5 based on Newton's Law of **Gravitation**

- gravitational attraction force
- orbital speed of satellites
- gravitational acceleration rate

Newton's Law of Universal Gravitation

- gravitate: to move towards or be attracted to another object
- Two chunks of mass, m_1 m_2 , that are separated by a distance *r* exert a gravitational attraction force F_q of equal magnitude on each other

$$
F_g = \frac{G \bullet m_1 \bullet m_2}{r^2} \quad G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2
$$

- G is a universal proportionality constant that converts m_1m_2/r^2 into Newtons
- •Magnitude of F_g is the same on both masses $\frac{3}{3}$

Inverse Square Law

- force of equal magnitude acting on Moon and on Earth
- r is a center-to-center

F_q Calculations

Mass above Earth's surface (satellite or orbiting object)

Use $r =$ (radius of Earth $+$ height above surface)

Practice with Universal Gravitation Law

Practice with Universal Gravitation Law

Reduce the separation distance to $\frac{1}{2}$ r New F_q value? $Fg = 4X$ original value (inverse square) = 160 N

Practice with Universal Gravitation Law

Superposition Principle

 \cdot F_g forces from adjacent masses do not interact or change each other

Gravitation near Earth's surface

• acceleration rate due to gravity as a function of r

$$
\Sigma F = m_1 a_g = G \frac{m_1 M_E}{r^2}
$$

$$
a_g = \frac{GM_E}{r^2}
$$

acceleration rate is independent of the mass of the object

Variable change – prediction problems (usually M.C.)

 M_E , R_E , g_E $M_X = 2M_E R_x = R_E$ $g_X = ?$ 2g_E $M_X = M_E$ $R_X = \frac{1}{2} R_E$ $g_X = ?$ 4 g_E $M_X = \frac{1}{2} M_E$ & $R_X = 2R_E$ g_X = ? 1/8 g_E

Variable change – prediction problems

$$
M_X = 2M_E
$$

\n
$$
R_X = ?
$$

\n
$$
R_X = \sqrt{2} R_E
$$

\n
$$
R_X = 2 R_E
$$

\n
$$
M_X = ?
$$

\n
$$
M_E
$$

Deriving UCM velocity

- Determine what force(s) are providing the centripetal force
- Equate that force with F_c
- solve for **v**

satellite speed independent of its mass

 $m_s' = 2m_s$ $v' = ?$ $v' = v$

5-8 Satellites and "Weightlessness"

Objects in orbit are said to experience weightlessness. They do have a gravitational force acting on them, though!

The satellite and all its contents are in free fall, so there is no normal force. This is what leads to the experience of weightlessness.

15

Apparent weightlessness in orbit

Apparent Weightlessness

- Spacecraft and all contents are in a state of continuous free-fall towards Earth
- Since cabin floor is "falling" at same rate as astronaut, the floor cannot exert a normal force up on astronaut
- Centripetal acceleration = free-fall acceleration rate (approx $5 - 8$ m/s² in orbits around Earth)
- Centripetal force provided by Fg gravitational attraction force
- *NOT* because weight $= 0$
- Mr. Connell video

5-9 Kepler's Laws

Kepler's laws describe planetary motion.

1. The orbit of each planet is an ellipse, with the Sun at one focus.

5-9 Kepler's Laws and Newton's Synthesis

2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.

Law of Areas equivalent to angular momentum conservation $r_1mv_1 = r_2mv_2$

Chapter 11 Simple Harmonic Motion

Simple Harmonic Motion

x

- A: amplitude $=$ max displacement
- $x = 0$: equilibrium where $\Sigma F = 0$
- k: spring constant Hooke's law *F* $k =$

21

Restoring Force points to center

Restoring force $F = -kx$

- directed opposite the displacement
- directly proportional to displacement
- maximum at the amplitudes $F = + kA$

SHM quantities max/zero

Vertical Springs

- mass is hung from spring at rest at unstrained length
- calculate k using equilibrium
- spring force $=$ kd_o $=$ mg
- oscillation occurs above and below this equilibrium position

• amplitude is then the max displacement from this equilibrium position, determined by person/conditions which create oscillation

Frequency & Period

• frequency f: – SI units are Hertz (Hz) inversely related • period T: # of *oscillations* 1 sec *ond* # of seconds 1 full oscillation $T = \frac{1}{g}$ $f = \frac{1}{g}$ *f T* $=\frac{1}{a}$ $f=$

SHM is sinusoidal motion

Copyright © 2005 Pearson Prentice Hall, Inc.

Energy approach to SHM

OR

Total mechanical energy stays constant

 $E = KE + PE = 1/2$ mv² + 1/₂ kx²

Total energy = all PE = $\frac{1}{2}$ kA² at either amplitude position

Total energy = all KE =
$$
\frac{1}{2}
$$
 mv_{max}²
at equilibrium position

Energy in SHM – graphical approach

 $\left(u\right)$

Elastic Potential Energy U Kinetic Energy K Total mechanical energy E

x, v, a calculations

1) displacement or velocity

 $\frac{1}{2}$ kA² = $\frac{1}{2}$ mv² + $\frac{1}{2}$ kx²

on formula sheet!!

Copyright © 2005 Pearson Prentice Hall, Inc.

 $x = -A$ $x = 0$

 $x = A$

11-3 The Period and Sinusoidal Nature of SHM

SHM is motion that varies sinusoidally with time

The bottom curve is the same, but shifted ¼ period so that it is a sine function rather than a cosine.

2 functions to recognize and understand

x(t)= Acos(t)

or

x(t)= Asin(t)

SHM – sinusoidal functions

sinusoidal variation with time NOT linear, quadratic, inverse or exponential

UCM – SHM relationship

shadow projection of UCM creates SHM

phere rotating vith constant eed along the cumference of a circle

ω omega

• Linear velocity

$$
v_T = \frac{s}{t}
$$

• Angular velocity

$$
\omega = \frac{\theta \text{ in radians}}{t \text{ in } \sec on ds}
$$

 \cdot θ is the same for all skaters; ω is the same for all skaters

 \bullet ω of the UCM object can be used to locate the SHM object

Angular Velocity – Angular Frequency ω

• since
$$
\omega = \frac{\theta}{t}
$$
 then $\theta = \omega t$

- angular frequency ω (omega)
	- same as the angular velocity of an object in UCM in radians per second

$$
\omega = \frac{2\pi \text{ radians}}{T \text{ seconds}} = 2\pi f \qquad \text{f must be in Hertz}
$$

each cycle of an object in SHM consists of angular displacement = 2π radians

37

Displacement – time function

Maximum Velocity

Period of SHM

- Period of an object (mass on a spring or a pendulum) is independent of the amplitude of the motion
	- with greater amplitude comes greater restoring force
	- greater restoring force causes faster speeds
	- object covers the longer distance at faster speeds
	- period stays constant

Period for mass on a spring

$$
v_{\text{max}} = \frac{2\pi A}{T} \text{ from } UCM
$$

from energy approach

Mass on a spring

• Same formula for horizontal or vertical spring

$$
T = 2\pi \sqrt{\frac{m}{k}}
$$

- Period depends on:
	- mass of object
	- spring constant
- Period is independent of:
	- gravity
	- amplitude

Simple pendulum

• Bob at the end of a string

$$
T = 2\pi \sqrt{\frac{L}{g}}
$$

- Period depends on:
	- length of pendulum
	- gravitational acceleration rate
- Period is independent of:
	- mass of the bob
	- amplitude

