

What are the electrons doing?

Copyright © 2005 Pearson Prentice Hall, Inc.

Negatively charged objects have gained excess electrons

Positively charged objects have lost electrons – have excess positive

elementary charge is quantized $e = 1.6 \times 10^{-19} C$

proton q= + 1.6 x 10^{-19} C

16.3 Insulators and Conductors

Conductor:

Charge flows freely Metals

Insulator:

Almost no charge flows rubber, plastic, wood,

The Electroscope

Grounding

- Neutralizing electric charge on an object by providing a path for excess charge to be transferred to Earth
- Electrical equilibrium reached by:
 - excess electrons leaving to ground
 - lack of electrons being replenished by ground
 - touching charged object with hand
 - touching it to plumbing fixture

Not the correct way to ground

3 methods of charging an object

1. Friction – rubbing contact that transfers electrons from one object to another

Charge distributes across a symmetrical object uniformly

3. Induction

- no contact between charged object and the object acquiring charge
- charged object repels like charges out of object to ground or another object
- results in charged object with opposite sign

Redistribution of charge

 An electrically charged object attracts a neutral object

Coulomb's Law of Electrostatic Force

- Inverse square law similar to gravitational force law
- Force = vector quantity
- Magnitude of force same on both charges

$$F = \frac{kq_1q_2}{r^2}$$

r = separation distance between charges

must be in meters

 $q_1\,q_2$ must be in coulombs not μC

- Direction:
 - use magnitude of charge NOT sign in your force calculations
 - attraction or repulsion based on signs draw vector diagrams!
- $k = proportionality constant 9 \times 10^9 Nm^2/C^2$

Draw vector diagrams to determine net force

Copyright © 2005 Pearson Prentice Hall, Inc.

Net Force = Vector Sum

Example 4 – draw vector diagrams using force law for vector directions

In which region can a +4q charge be in equilibrium?

16.5 Coulomb's Law

Coulomb's law strictly applies only to point charges.

Superposition: for multiple point charges, the forces on each charge from every other charge can be calculated and then added as vectors.

Electric Field

Fields exert forces on objects put in them

Fields are a property of the space around the charged object that creates them

Test for presence of electric field

Copyright © 2005 Pearson Prentice Hall, Inc.

- Place a small positive test charge in field
- ratio of force on charge to amount of test charge = field strength
- direction of field is direction
 of force on + test charge
- using a charge changes force not field direction

Electrons move opposite to field

Force on a charge placed in the field

$$\vec{F} = q\vec{E}$$

Electric Field Strength

- Independent of any charge placed in field to test for field strength
 - Field strength is independent of force and test charge: greater test charge results in greater force
- property of the field not of the test charge
- field strength E depends on amount of charge on object that creates the field
- vector quantity points in the direction that a POSITIVE test charge moves in field
- Units: <u>Newtons (N)</u> Coulomb (C)

Electric field strength at P depends on

1) amount of charge on the object creating the field

2) distance r that point P is away from the object creating the field

Field strength due to a point charge

- Superposition principle applies when finding resultant electric field due to several charges
- Draw diagram with E vectors based on + test charge
- •Be careful for +/- signs of charge Q

Electric Field Lines

• property of point in space

field exists
 whether test
 charge in in field
 or not

Electric field lines point AWAY from a positively charged object

Point charges create NON-UNIFORM electric field varies in both magnitude and direction

Electric Field Lines: Imaginary Map Lines

- Electric field lines point IN towards a negatively charged object
- Lines point in direction a small positive test charge would move if placed in the field
- Strength of field indicated by number and spacing of field lines

Electric Field = Resultant of all field lines present

point away from + and in toward –

Electric field is tangent to field line at any point

Field Lines

• direction + charge moves if placed in field

Net electric field at point P

- · you will need to be able to identify direction of electric field
- draw an imaginary + at point P and determine which way it would move as a result of the field from A or from B
- Electric field is NON-uniform surrounding point charges

Net field = vector sum

4 field vectors present at C. E_3 cancels E_1 E_4 and E_2 sum up to yield E_{24}

(b) 4 field vectors present

 E_1 and E_3 sum up to yield E_{13}

 E_2 and E_4 sum up to yield E_{24}

 E_{13} and E_{24} sum up to yield E pointing straight up:

x components cancel, y components add

Electric Field between oppositely charged parallel plates

Electric field

• points from + plate to - plate

 is uniform at all points between the plates

- E has same magnitude at all points
- Field lines are parallel

16.9 Electric Fields and Conductors

The static electric field inside a conductor is zero – if it were not, the charges would move.

The net charge on a conductor is on its surface.

16.9 Electric Fields and Conductors

The electric field is perpendicular to the surface of a conductor – again, if it were not, charges would move.

Good conductor

Copyright © 2005 Pearson Prentice Hall, Inc.

Faraday cage

charge goes to outside of metal placed in electric field

high power line worker

Motion in an electric field

When a charged particle enters an electric field, it experiences a force:

$$\vec{F} = q\vec{E}$$

Does an electron or a proton experience a greater acceleration when placed in a uniform electric field

$$q\vec{E} = m\vec{a} \Longrightarrow \vec{a} = \frac{q\vec{E}}{m}$$

- proton is 10,000 times more massive than electron
- same force on both
- electron experiences greater acceleration