Chapter 21 Electromagnetic Induction

Electromagnetic Induction

 When the magnetic field passing through a conducting loop is changing with respect to time an emf (*E*= potential difference), is induced in the loop causing induced current to flow through the loop.

Copyright © 2005 Pearson Prentice Hall, Inc.

2 ways to change B field through loop

1) change the size of the area that the B field is penetrating

Copyright © 2005 Pearson Prentice Hall, Inc.

2 ways to change B field through loop 2) change the number of field lines or the intensity of the B field

B field is increasing out of the page

Magnetic Flux $\Phi_{\rm B}$

- product of B field and area
- measure of how much field is passing through the loop perpendicular to surface area

Magnetic Flux $\Phi_{\rm B}$

Flux is proportional to how many field lines pass in a perpendicular direction through an area

Flux Change Induces emf *E*

constant flux $\mathcal{E} = 0$

flux increasing

induced current flows one way

flux decreasing

induced current flows opposite direction

solenoid, magnet demo

Video: H. Wiehl

- 8 ×

Faraday's Law of Electromagnetic Induction

(–)sign indicates that induced current opposes the change in flux = Lenz's Law

Many ways to change flux through a loop

change B intensity

change current in solenoid

pull loop into/out of B

slide a bar across a rail system causing loop to increase in size

21.3 EMF Induced in a Moving Conductor

This image shows another way the magnetic flux can change:

21.3 EMF Induced in a Moving Conductor

The induced current is in a direction that tends to slow the moving bar – it will take an external force to keep it moving.

 \odot (\bullet) electron \odot \odot \odot (\cdot) \odot \odot \odot \odot \odot \odot \odot \odot (\cdot) (\bullet) R.H. в (b)

21.3 EMF Induced in a Moving Conductor

The induced emf has magnitude

$$\mathscr{E} = \frac{\Delta \Phi_B}{\Delta t} = \frac{B \Delta A}{\Delta t} = \frac{B l v \Delta t}{\Delta t} = B l v$$
 (21-3)

Lenz's Law

 Current induced by changing flux flows in such a direction to oppose the change that caused it

Faraday's Law states that changing flux induces current

Lenz's Law states the principle that allows you to determine the induced current direction

Lenz's Law

Lenz's Rule: Solid and Slotted Metal Ring

Magnetism / Induction

Video: H. Wiehl

Applying Lenz's Law

- Determine direction of changing B field and whether it is increasing or decreasing
- 2. Draw direction of induced B field to oppose this change
- Use RHR to predict the induced current direction that will yield this induced B field

flux is decreasing into the page

induced current flows clockwise to create induced B field into page to offset that change

Lenz's Law Practice – Example 4

Copyright © 2005 Pearson Prentice Hall, Inc.

Lenz's Law Practice

Predict direction of induced current in the loop – page 589

Lenz's Law Practice

Predict direction of induced current in loop and through the resistor R

