Chapter 3

Kinematics in Two Dimensions; Vectors

Resultant vector is the vector sum of two vectors

Tail – to – tip method for drawing vector diagrams

Resultant vector has magnitude and direction

Vector subtraction

Copyright © 2005 Pearson Prentice Hall, Inc.

Perpendicular vector addition

A hiker walks 8 km east then turns and walks 2 km north.

Calculate a) the distance that the hiker walked and b) his resultant displacement.

a) Distance = scalar quantity

total distance walked = 8+ 2 = 10 km

b) Displacement = vector quantity

use Pythagorean Theorem to find magnitude of resultant

$$\sqrt{(64+4)} = 8.2$$

use inverse tangent to find direction – include compass directions $\tan^{-1}(\frac{2}{8}) = 14.0^{\circ}$ North of East

cart video

Vector resolution – breaking vector into its horizontal and vertical components

Copyright © 2005 Pearson Prentice Hall, Inc.

- resolve V_1 , V_2 into x and y components
- add x components, add y components to yield $V_{\rm x}$ and $V_{\rm y}$
- add 2 perpendicular vectors to find resultant magnitude and direction

$$V = \sqrt{V_x^2 + V_y^2}$$

Projectile Motion

- Scooter where does the ball land?
- Which ball hits the table first?

- motion in x and y directions are independent of each other
- both balls are accelerating in free fall at same rate

Copyright © 2005 Pearson Prentice Hall, Inc.

3-5 Projectile Motion

• It can be understood by analyzing the horizontal and vertical motions separately.

- Constant velocity in x direction
- Free fall in y direction

Copyright © 2005 Pearson Prentice Hall, Inc.

3-6 Solving Problems Involving Projectile Motion

Projectile motion is motion with constant acceleration in two dimensions, where the acceleration is *g* and is down.

TABLE 3–2 Kinematic Equations for Projectile Motion (y positive upward; $a_x = 0$, $a_y = -g = -9.80 \text{ m/s}^2$)

Horizontal Motion	V	ertical Motion [†]
$(a_x = 0, v_x = \text{constant})$		$(a_y = -g = \text{constant})$
$v_x = v_{x0}$	(Eq. 2–11a)	$v_y = v_{y0} - gt$
$x = x_0 + v_{x0}t$	(Eq. 2–11b)	$y = y_0 + v_{y0}t - \frac{1}{2}gt^2$
	(Eq. 2–11c)	$v_y^2 = v_{y0}^2 - 2g(y - y_0)$

[†] If y is taken positive downward, the minus (-) signs in front of g become + signs.

Copyright © 2005 Pearson Prentice Hall, Inc.

Copyright © 2005 Pearson Prentice Hall, Inc.

Resolve initial velocity V_0 at angle θ into V_{0x} , V_{0y} and then use projectile motion kinematic equations to solve problems